Search

Travel Tips

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Lifestyle

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Hotel Review

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Python数据可视化——基本图表绘制

面积图、填图、饼图

面积图、填图、饼图


plt.plot.area()

plt.fill(), plt.fill_between()

plt.pie()


# 面积图


fig,axes = plt.subplots(2,1,figsize = (8,6))
df1 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df2 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
df1.plot.area(colormap = 'Greens_r',alpha = 0.5,ax = axes[0])
df2.plot.area(stacked=False,colormap = 'Set2',alpha = 0.5,ax = axes[1])
# 使用Series.plot.area()和DataFrame.plot.area()创建面积图
# stacked:是否堆叠,默认情况下,区域图被堆叠
# 为了产生堆积面积图,每列必须是正值或全部负值!
# 当数据有NaN时候,自动填充0,所以图标签需要清洗掉缺失值

image.png

# 填图


fig,axes = plt.subplots(2,1,figsize = (8,6))
x = np.linspace(0, 1, 500)
y1 = np.sin(4 * np.pi * x) * np.exp(-5 * x)
y2 = -np.sin(4 * np.pi * x) * np.exp(-5 * x)
axes[0].fill(x, y1, 'r',alpha=0.5,label='y1')
axes[0].fill(x, y2, 'g',alpha=0.5,label='y2')
# 对函数与坐标轴之间的区域进行填充,使用fill函数
# 也可写成:plt.fill(x, y1, 'r',x, y2, 'g',alpha=0.5)
x = np.linspace(0, 5 * np.pi, 1000) 
y1 = np.sin(x)  
y2 = np.sin(2 * x)  
# y2 = 0.5
axes[1].fill_between(x, y1, y2, color ='b',alpha=0.5,label='area')  
# 填充两个函数之间的区域,使用fill_between函数
for i in range(2):
    axes[i].legend()
    axes[i].grid()
# 添加图例、格网

image.png

# 饼图 plt.pie()

# plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, 

# radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, hold=None, data=None)


s = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')
plt.axis('equal')  # 保证长宽相等
plt.pie(s,
       explode = [0.1,0,0,0],
       labels = s.index,
       colors=['r', 'g', 'b', 'c'],
       autopct='%.2f%%',
       pctdistance=0.6,
       labeldistance = 1.2,
       shadow = True,
       startangle=0,
       radius=1.5,
       frame=False)
print(s)
# 第一个参数:数据
# explode:指定每部分的偏移量
# labels:标签
# colors:颜色
# autopct:饼图上的数据标签显示方式
# pctdistance:每个饼切片的中心和通过autopct生成的文本开始之间的比例
# labeldistance:被画饼标记的直径,默认值:1.1
# shadow:阴影
# startangle:开始角度
# radius:半径
# frame:图框
# counterclock:指定指针方向,顺时针或者逆时针

image.png

直方图


plt.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, 

histtype='bar', align='mid', orientation='vertical',rwidth=None, log=False, color=None, label=None, 

stacked=False, hold=None, data=None, **kwargs)

 

# 直方图+密度图


# 直方图与柱状图完全不一样,
# 柱状图直接根据数据得到一个数据结果
# 直方图是根据源数据获得一个概率分布
s = pd.Series(np.random.randn(1000))
s.hist(bins = 20,
       histtype = 'bar',
       align = 'mid',
       orientation = 'vertical',
       alpha=0.5,
       density =True)
# The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.
#  alternative="'density'", removal="3.1")
# bin:箱子的宽度
# density 标准化,  
# histtype 风格,bar,barstacked,step,stepfilled
# orientation 水平还是垂直{‘horizontal’, ‘vertical’}
# align : {‘left’, ‘mid’, ‘right’}, optional(对齐方式)
s.plot(kind='kde',style='k--',grid=True)
# 密度图

image.png

# 堆叠直方图


plt.figure(num=1)
df = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000),
                    'c': np.random.randn(1000) - 1, 'd': np.random.randn(1000)-2},
                   columns=['a', 'b', 'c','d'])
df.plot.hist(stacked=True,
             bins=20,
             colormap='Greens_r',
             alpha=0.5,
             grid=True)
# 使用DataFrame.plot.hist()和Series.plot.hist()方法绘制
# stacked:是否堆叠
df.hist(bins=50)
# 生成多个直方图

image.png

 散点图、矩阵散点图


plt.scatter(), pd.scatter_matrix()
# plt.scatter()散点图
# plt.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None, 
# alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)
import numpy as np
np.seterr(divide='ignore', invalid='ignore')
# RuntimeWarning: invalid value encountered in sqrt
#  scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor
plt.figure(figsize=(8,6))
x = np.random.randn(1000)
y = np.random.randn(1000)
plt.scatter(x,y,marker='.',
            s = 10, # 大小可以表示第三维度
#            s = np.random.randn(1000)*100,
           cmap = 'Reds',
           c = y,# 可以表示第四个维度
           alpha = 0.8,
           )
plt.grid()
# s:散点的大小
# c:散点的颜色
# vmin,vmax:亮度设置,标量
# cmap:colormap

image.png

# pd.scatter_matrix()散点矩阵

# pd.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, 
# grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds)
df = pd.DataFrame(np.random.randn(100,4),columns = ['a','b','c','d'])
# AttributeError: module 'pandas' has no attribute 'scatter_matrix'
pd.plotting.scatter_matrix(df,figsize=(10,6),
                 marker = 'o',
                 diagonal='hist',
                 alpha = 0.5,
                 range_padding=0.1)
# diagonal:({‘hist’, ‘kde’}),必须且只能在{‘hist’, ‘kde’}中选择1个 → 每个指标的频率图
# range_padding:(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点


image.png

这是一个简介
    互联网冲浪金牌选手。赖床世锦赛纪录保持者,拖延俱乐部顶级VIP,夜宵外卖一级鉴赏师,国家脱单脱贫重点扶持对象,中央戏精学院优秀学生,亚洲酸柠檬推广大使,国家一级退堂鼓表演艺术家。
评论 (125)
评论

我是 s enim interduante quis metus. Duis porta ornare nulla ut bibendum

Rosie

6 minutes ago

Sed ac lorem felis. Ut in odio lorem. Quisque magna dui, maximus ut commodo sed, vestibulum ac nibh. Aenean a tortor in sem tempus auctor

Agatha Christie

December 4, 2020 at 3:12 pm

Sed ac lorem felis. Ut in odio lorem. Quisque magna dui, maximus ut commodo sed, vestibulum ac nibh. Aenean a tortor in sem tempus auctor

Steven

December 4, 2020 at 3:12 pm

Donec in ullamcorper quam. Aenean vel nibh eu magna gravida fermentum. Praesent eget nisi pulvinar, sollicitudin eros vitae, tristique odio.

Danielle Steel

December 4, 2020 at 3:12 pm