Travel Tips
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主 同时可延展出多种其他图表样式
图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主
同时可延展出多种其他图表样式
plt.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False,
style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None,
rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) ts = ts.cumsum() plt.plot(ts) ts.plot(kind='line', label = 'hehe', style = '--', color = 'lightgreen', alpha = 0.4, use_index = True, rot = 45, grid = True, ylim = [-50,50], yticks = list(range(-50,50,10)), figsize = (8,4), title = 'test', legend = True) #plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'x') # 网格 plt.legend() # Series.plot():series的index为横坐标,value为纵坐标 # kind → line,bar,barh,kde...(折线图,柱状图,柱状图-横...) # label → 图例标签,Dataframe格式以列名为label # style → 风格字符串,这里包括了linestyle(-),marker(.),color(g) # color → 颜色,有color指定时候,以color颜色为准 # alpha → 透明度,0-1 # use_index → 将索引用为刻度标签,默认为True # rot → 旋转刻度标签,0-360 # grid → 显示网格,一般直接用plt.grid # xlim,ylim → x,y轴界限 # xticks,yticks → x,y轴刻度值 # figsize → 图像大小 # title → 图名 # legend → 是否显示图例,一般直接用plt.legend() # 也可以 → plt.plot()
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD')) df = df.cumsum() df.plot(kind='line', style = '--.', alpha = 0.4, use_index = True, rot = 45, grid = True, figsize = (8,4), title = 'test', legend = True, subplots = False, colormap = 'Greens') # subplots → 是否将各个列绘制到不同图表,默认False # colormap 选择色系 # 也可以 → plt.plot(df)
plt.plot(kind='bar/barh') , plt.bar()
fig,axes = plt.subplots(4,1,figsize = (10,10)) s = pd.Series(np.random.randint(0,10,16),index = list('abcdefghijklmnop')) df = pd.DataFrame(np.random.rand(10,3), columns=['a','b','c']) s.plot(kind='bar',color = 'k',grid = True,alpha = 0.5,ax = axes[0]) # ax参数 → 选择第几个子图 # 单系列柱状图方法一:plt.plot(kind='bar/barh') df = pd.DataFrame(np.random.rand(10,3), columns=['a','b','c']) df.plot(kind='bar',ax = axes[1],grid = True,colormap='Reds_r') # 多系列柱状图 # 相互之间的变化趋势线 df.plot(kind='bar',ax = axes[2],grid = True,colormap='Blues_r',stacked=True) # 多系列堆叠图 # stacked → 堆叠 # 占比情况 df.plot.barh(ax = axes[3],grid = True,stacked=True,colormap = 'BuGn_r') # 新版本plt.plot.<kind>
plt.figure(figsize=(10,4)) x = np.arange(10) y1 = np.random.rand(10) y2 = -np.random.rand(10) plt.bar(x,y1,width = 1,facecolor = 'yellowgreen',edgecolor = 'white',yerr = y1*0.1) plt.bar(x,y2,width = 1,facecolor = 'lightskyblue',edgecolor = 'white',yerr = y2*0.1) # x,y参数:x,y值 # width:宽度比例 # facecolor柱状图里填充的颜色、edgecolor是边框的颜色 # left-每个柱x轴左边界,bottom-每个柱y轴下边界 → bottom扩展即可化为甘特图 Gantt Chart # align:决定整个bar图分布,默认left表示默认从左边界开始绘制,center会将图绘制在中间位置 # xerr/yerr :x/y方向error bar 误差线 for i,j in zip(x,y1): plt.text(i+0,j-0.15,'%.2f' % j, color = 'white') for i,j in zip(x,y2): plt.text(i+0,j+0.05,'%.2f' % -j, color = 'white') # 给图添加text # zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
# table(cellText=None, cellColours=None,cellLoc='right', colWidths=None,rowLabels=None, rowColours=None, rowLoc='left',
# colLabels=None, colColours=None, colLoc='center',loc='bottom', bbox=None)
data = [[ 66386, 174296, 75131, 577908, 32015], [ 58230, 381139, 78045, 99308, 160454], [ 89135, 80552, 152558, 497981, 603535], [ 78415, 81858, 150656, 193263, 69638], [139361, 331509, 343164, 781380, 52269]] columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail') rows = ['%d year' % x for x in (100, 50, 20, 10, 5)] df = pd.DataFrame(data,columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail'), index = ['%d year' % x for x in (100, 50, 20, 10, 5)]) print(df) df.plot(kind='bar',grid = True,colormap='Blues_r',stacked=True,figsize=(8,3)) # 创建堆叠图 plt.table(cellText = data, cellLoc='center', cellColours = None, rowLabels = rows, rowColours = plt.cm.BuPu(np.linspace(0, 0.5,5))[::-1], # BuPu可替换成其他colormap colLabels = columns, colColours = plt.cm.Reds(np.linspace(0, 0.5,5))[::-1], rowLoc='right', loc='bottom') # cellText:表格文本 # cellLoc:cell内文本对齐位置 # rowLabels:行标签 # colLabels:列标签 # rowLoc:行标签对齐位置 # loc:表格位置 → left,right,top,bottom plt.xticks([]) # 不显示x轴标注
Sed ac lorem felis. Ut in odio lorem. Quisque magna dui, maximus ut commodo sed, vestibulum ac nibh. Aenean a tortor in sem tempus auctor
December 4, 2020 at 3:12 pm
Sed ac lorem felis. Ut in odio lorem. Quisque magna dui, maximus ut commodo sed, vestibulum ac nibh. Aenean a tortor in sem tempus auctor
December 4, 2020 at 3:12 pm
Donec in ullamcorper quam. Aenean vel nibh eu magna gravida fermentum. Praesent eget nisi pulvinar, sollicitudin eros vitae, tristique odio.
December 4, 2020 at 3:12 pm
我是 s enim interduante quis metus. Duis porta ornare nulla ut bibendum
Rosie
6 minutes ago